Evolving VDPV2 Epidemiology - 2019

Polio Partners Group Meeting, 6 December 2019, Geneva Mark A Pallansch, Centers for Disease Control and Prevention

cVPDV2 in 2019

- Dramatic increase in the number of new emergences (>40 in 2019 alone), disproportionately in Central Africa
- New emergences without obvious source
 - Pakistan: Multiple VDPV2 emergences that are cVDPV2 or unclassified
 - Several genetically linked SL2 viruses with as few as 2 nt changes from Sabin 2, despite no recent OPV2 use

cVDPV2 in Central Africa

Emergence Name

0 ANG-HUI-1 (latest: contact 5019-06-04) ANG-LNO-1 (latest: contact 2019-05-14) ANG-LNO-2 (latest: contact 2019-08-01) 0000 CAF-BAM-1 (latest: case 2019-09-07) CAF-BAM-1-ENV (latest: collection 2019-07-22) CAF-BAM-2 (latest: contact 2019-05-27) CAF-BIM-1 (latest: case 2019-09-08) CAF-BIM-1-ENV (latest: collection 2019-09-05) 8 CAF-BIM-2 (latest: contact 2019-06-28) CAF-BIM-2-ENV (latest: collection 2019-09-11) CAF-BIM-3 (latest: contact 2019-08-23) RDC-HLO-2 (latest: case 2019-09-02) RDC-KAS-1 (latest: contact 2019-03-17) RDC-KAS-2 (latest: case 2019-06-07) RDC-KAS-3 (latest: case 2019-06-30) 0 RDC-SAN-1 (latest: case 2019-08-29) 0 RDC-TPA-1 (latest: contact 2019-06-27) 0 cVDPV2 (latest: case 2019-08-15)

Dots random within LGA
Created:10/24/2019
Last case dates are onset dates.
Last contact dates are specimen dates.
Last ENV dates are collection dates.

AFP cases, Contacts, Community Contacts, and ENV Specimens

Changing frequency of emergences

Investigation - Sequencing

Virus Genetics – Challenges of interpretation

- Because of low divergence it has been challenging to establish unambiguous genetic linkages or independence among an increasing number of events.
- However, a unique mutation in the Kasai and Angola viruses allows for a unique opportunity to analyze the question of linkage and independence.
- This is being addressed by complete genome sequencing of all VDPV2 viruses in Central Africa (DRC, ANG, CAR).
- This is being expanded to other emergences sequentially (e.g., PAK is also in progress)

ANG, RDC/KAS, RDC/KCE whole genome analysis

- VDPVs from ANG, RDC/ Kasai & Kasai Centrale all share 5'UTR
 - Different from RDC/HLO and RDC/TAN
- Multiple recombination partners in P2 and P3
- Suggests linkage
- Sequencing and analyses still ongoing

3. PV2-PolioSabin2_AY184220
4. 3015616137_ZZYQXBFB_RDC-KAS-KAM-19-001_5nt_2019.1068
5. 3015616138_ZZYQXBFC_RDC-KAS-KAM-19-001_5nt_2019.1068
6.3015619633_ZZYQXBO4_RDC-KAS-KAM-19-001CC3_6nt_
7.3015619631_ZZYQXBO2_RDC-KAS-KAM-19-001CC10_5nt_
8.3015619632_ZZYQXBO3_RDC-KAS-KAM-19-001CC6_7nt_
9.3015619630_ZZYQXBO1_RDC-KAS-KAM-19-001CC14_4nt_
10.3015620583_ZZYGCDVX_ANG-LNO-CAM-19-001_10nt_2019.2603
11.3015626438_ZZYGCKTS_RDC-KCE-BIL-19-001_10nt_2019.2822
12. 3015626448_ZZYGCKU2_ANG-HUI-CUV-19-002_6nt_2019.3562
13. 3015626450_ZZYGCKU4_ANG-HUI-CUV-19-002_6nt_2019.3562
14.3015626440_ZZYGCKTU_RDC-KAS-KAM-19-004_6nt_2019.2904
15. 3015627797_ZZYGCM39_RDC-KAS-KAM-19-002_6nt_2019.2548
16. 3015626455_ZZYGCKU9_ANG-LNO-CAM-19-001-C12_8nt_
17.3015619623_ZZYQXBNX_RDC-TAN-ANK-19-003_8nt_2019.1123
18.3015619624_ZZYQXBNY_RDC-HLO-MAL-19-002_8nt_2019.1123
19. 3015619625_ZZYQXBNZ_RDC-HLO-MAL-19-002_8nt_2019.1123

	1	495	986	1,483	1,983	2,483	2,983	3,475	3,975	4,475	4,975	5,475	5,975	6,475	6,975	7,43
			polyprotein CDS													
				P1; capsi	d protein	precurso	or		P2	2			P3			
			p prot	ein VP	protein	V 🔪 pro	tein VP1	prot	р р	rotein 20	Сре 🔪 р	. Prot	ei 🔪 pr	otein 3D	peptide	
			1 1	11	11 1	11.1	1 1 11	11 1 1	111		1 11	11 1	1 11 1			
	Specie	es												S	pecies C	
					11 1	111			11		1 11	11 1	1 11 1			
	Specie	es													pecies C	
	Specie	es												S	pecies C	
				1.11	11 11	11.1	1 11 11	11 1	1 11	1	1 1					
	Specie	es												S	pecies C	
				1.11	11 1	111 1 1	1 11 11						1 1 11 1			
	Specie	es 													pecies C	
	Specie	es												5	pecies C	
3				1 1	11	11111	11 11 1 11			11	1 1					
	Specie	es C											Sa	abin 3		
			1 11			111 1 10 1							_			
	Specie	es						_				Species	; C			
	Specie	es									9	Species C				
				1 1 11		111	1 1 1 1									1811
	Specie	es									S	opecies C				
	C nord		III	111		1111	1 1 1					Energies (
						111						species C				
	Specie	es									9	Species C				
				HII			111 1									
	Specie	es										Spe	cies C			
	Spaci											Spacias (
	E III III										_	species c				
	Speci										9	Species C				
			П			1 1										
	Speci										9	Species C				

Angola, 2019

Species C 5' UTR:

97.6-100%

Summary of genetic inference

- The viruses in Kasai/DRC and Angola are all descended from a single 'source' that is already genetically distinct (2nt different from Sabin in VP1)
- Complete genome sequencing of multiple viruses in 2019 from this geography confirm additional genetic traits (mutation and recombination) that are consistent with a single 'source' virus.
- Viruses with minimal Sabin divergence from this source have emerged in multiple geographies from February to September, which has never been observed previously
- After emergence, spread and accumulation of genetic mutations occurred just like typical of cVDPVs

Possible scenarios for an explanation

- 1) The 'source' is a single child whose virus spread to multiple geographies without accumulating genetic changes inconsistent with the prior 19 years experience
- 2) The 'source' is a single child whose virus was highly transmissible prior to becoming a VDPV, also never observed
- 3) The 'source' is a common source that is highly distributed in the defined geography leading to multiple independent emergences of cVDPV2 (e.g., vaccines)

Summary

- Changing epidemiology of VDPV2 emergence, primarily in Central Africa
- Increasing ambiguity of linkage/independence because of low divergent cVDPV2
- Common related source but divergent from Sabin as measured by unique genetic mutations and recombination may provide insight into explanation to changing epidemiology
- Immediate change to understand these 2019 emergence events will include whole genome sequencing on all emergent VDPV2
- Uncertainty whether this will be generalizable to other Central African geographies of explanations for cVDPV2 in areas without known mOPV2 use

Thank you